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Abstraet-The problem of detennining the optimal cross-sectional area function of
clamped-clamped columns under creep conditions is investigated by using the Pontryagin
maximum principle. Total volume V is minimized under given axial force P, critical time in the
Rabotnov-Shesterikov sense I .. and additional geometrical constraints.

I. INTRODUCTION

There exist various theories of creep buckling of columns. Some of them analyze
deflections of imperfect columns and define the critical time as corresponding to infinite
deflections or infinite deflection rates of such structures (Kempner, Hoff and Fraeijs de
Veubeke). In the present paper, however, we discuss optimization of perfectly straight and
axially compressed columns. The critical time is then defined as that corresponding to loss
of stability of the creep process in uniaxial compression. First proposals of such an
approach are due to Shanley[l] and Gerard[2], but it was Rabotnov and Shesterikov[3]
who derived a more consistent theory of that kind. A comparison of the above theories
was performed by Jahsman and Field [4]. Though certain objections were raised by
Jahsman and Field, and by Hoff[5, 6], it is the Rabotnov-Shesterikov creep buckling
theory which will serve as the basis for the represent considerations. It seems that a change
of the theory would influence the optimal shapes only very slightly.

Optimization of simply supported columns under creep conditions according to the
Rabotnov-Shesterikov theory was analyzed by Zyczkowski and Wojdanowska-Zaj,c[7].
However, in some cases of support, e.g. for clamped-clamped columns, a unimodal (single)
approach to optimal design leads to erroneous results and should be replaced by a bimodal
one. Bimodal otpimization, mentioned by KiusaJaas for columns on elastic foundation[8]
was discussed in detail for c1amped~lamped columns by Olhoff and Rasmussen[9]. The
present paper may be considered as a generalization of [7, 9-11]. The method of solution
will be based on Pontryagin's maximum principle.

2. STATE EQUATIONS

Let us consider a nonprismatic column of length I, compressed by the force P.
Following Rabotnov-Shesterikov we assume that the material is governed by the equation:

- utP =pp«-Au"=O,p =£-E (1)

where A, n and IX denote material constants depending on the temperature, while u and
p are stress and inelastic strain. In the state of pure compression before buckling one
obtains the following expression for p:

(2)

Expressing p in terms ofp =p(u, £) and supposing that at the instant of time t = t. the
equilibrium in the neighbouring position may exist (critical time), the following equation
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is obtained:
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(3)

where M, 1 stand for the bending moment and the moment of inertia of the cross-section,
respectively. Evaluating the coefficients A.., }'., we obtain [7]

Elw"------------------= -M
nI +-E[A(ex + 1)/.l1/(a+I)[F(x)jl-nH+I)/(a+llp(n-«-ll/(a+l)
ex

(4)

where F(x) is the cross-sectional area. For a clamped~lamped column the bending
moment M depends on redundant reactive forces. To eliminate them we differentiate (4)
twice with respect to x, obtaining

{

Elw" }"---------{;::--p-::--:::::J(:-n--«--""':'I):7.'/(<<~+~I) + Pw" =O.
I +~E[A(ex + 1)/.j1/(a+1 -

ex F(x)

Let us introduce the following dimensionless quantities:

I =Io~', ~(x) =F(x)IFo. w = yll, P=PPIElo

(5)

(6)

where v =2 for similar cross-sections, v = 1 or v =3 for plane-tapered columns. Then the
eqn (5) can be rewritten as:

{

~'y" }"
n \p)(n-«-I)/(<<+I)(Fop)(_n+a+I)f(a+I) +py" =0

I +-E[A(ex+ 1)I.ll/(a+1 - -
ex cP Elo

or in a more compact fonn:

{

cP'y" }"
I +~~r .-"".."+py' = 0

where the following parameter T has been defined:

n (£.12)(_n+«+ 11/(<<+ I)
T =- [A (ex + 1)1 .j1/(a+ I)EII/(a+ I) _0'_

ex 4

(7)

(8)

(9)

Foand 10 are the cross-sectional area and the second moment of area, respectively, at the
point Xo for which the volume of the column is V =FJ.

Equation (8) is broken into a set of four first order differential equations as it is
customary in the fonnalism ofproblems ofoptimal control. In what follows they are called
the state equations:

y; =({)/

(P )
(11-«-1)/(<<+11

l+T .-!
",/'=-~ M·
"f' cPr I

Q; =0.

(10)
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The subscript i = I refers to the antisymmetric form of buckling, while i = 2 to the
symmetric one. The boundary conditions have the form:

(a) the antisymmetric form (i = I)

YI(O) =0,

y,(1/2) =0,

(b) the symmetric form (i = 2)

Y2(0) = 0,

'P2(lj2) =0,

'P!(O) = 0

M1(1/2) == O.

'PiO) =0

Q2(1/2)== O.

(ll)

(12)

3. THE OPTIMALITY CRITERION

Let us assume the total volume of the column to be a cost function. We are looking
for its minimum, e.g.

(l3)

subject to the constraints:
(a) for the prescribed external load associated with two different modes of buckling

(b) for the critical time

t = t. = const.

(c) for the cross-sectional area (additional geoemtrical constraint)

(14)

(IS)

(16)

(d) fulfillment of the state eqns (10) with (II) and (12). The above problem will be
solved with the use of the Pontryagin maximum principle formalism.

The Hamiltonian can be written as:

In our case the vector of Lagrangian multipliers (""i' "'''1' "'MI ' "'Q) satisfies the same set of
differential equations as the vector of state variables (yj, 'Pi' Mj,Qa.

Moreover, the boundary conditions of the adjoint set ofequations are the same as (II)
and (12). It means that the set of the state eqns (10) is selfadjoint.

Thus the Hamiltonian (17) can be now rewritten as:

(18)

A necessary optimality condition an/o(J = 0 leads to the following transcendental
equation:
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2[ (n ) (P2)ln-«-ll/lO+ll]M2 - V + - -- - V + 1 T -
0:+1 rf1

,[ (n ) (PI)<n-o+ JiM I" - V + - ~+l- V + 1 T rf1
Il/<o+ I)J + ;.."vt 1= 0 (19)

4. DUAL FORMULATION

According to the method of solution applied (10) and (II), we reformulate the problem
(13)-(16) as follows: we want to find such a cross-sectional area function rf1(x), under
constraints:

t =t. =const.

fal cP(x)dx = I

rf11 S rf1(x) S rf12

(20)

(21)

(22)

which simultaneously satisfies the state eqns (10) with (11) or (12) and maximizes a
fundamenlal buckling load, i.e.

p-maximum. (23)

Such an approach is regarded as unimodal and for some values of rf11 it guarantees the
higher values of the second (antisymmetric) buckling load. But, for some other values of
<1>1 the optimal shape <I>(x) has the lower value of the second buckling load. Thus, the
obtained solution is actually not optimal. In this case, both symmetric and antisymmetric
modes should be taken simultaneously into account. So, instead of (23) we have:

(24)

with (20}-(22), (10), (II) and (12).
This approach is regarded as bimodal and the geometrical constraint can be then

inactive (see paragraph 5 or [7, 12-14] for more detailed explanation).
The results have been obtained in an iterative way. The full numerical procedure of

successive iteration is described in [10] for somewhat similar problems. The optimal
distribution rf1(x), in the unimodal case, is obtained from (19) when Jl == O. The constant
;. should be calculated in accordance with (21). In the bimodal case the parameter Jl is not
equal to zero and its value is found numerically so that PI == P2 is satisfied.

5. RESULTS

The numerical calculations were performed for A == 2.18 10-113, Gl == 9.52;
n == 32.S/copper, temperature 200°C, [7]/.

Figure I gives the antisymmetric (i == I) and symmetric (i == 2) modes of buckling for
a prismatic column as a function of time I. or the parameter T.

The maximal critical loads for a prescribed time t. are given in the Table I.

o 24 720 8760 87600

fJ_ 52.51 7.76

fJpri_lte 39.48 6.85

7.07 6.42

6.26 5.67

5.95

S.28

5.57

4.94
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Figure 2 gives the maximal values of buckling load obtained in the maximization
process of the first symmetric mode for the prescribed value of t. = 24 [h1and ()\ ~ 0.53.
The buckling load ofantisymmetric mode for the received optimal shapes is calculated and
marked by dashed line. The corresponding optimal mass distribution for cj). =0.8 is shown
in Fig. 3. For ~l < 0.53 the bimodal approach has been required. As one can see (Fig. 3)
the minimum constraint ~. =0.8 is active for 0.203 S x s 0.303 and 0.697 S x S 0.797.
Decreasing the minimum constraint we reach the point till =0.53, (Fig. 2), where the
minimum constraint is still active (N.B. for a shorter range ofx). Any further decrease in 4>.
gives erroneous solutions because the buckling load associated with the antisymmetric
lI-<;, Vnl ?II llIn ",-n
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mode is lower than previously found in the unimodal optimization process. So, starting
from ()I = 0.53 the optimal mass distribution is taken from eqn (19) with Jl. =F 0 (bimodal
approach). The value of Jl. is chosen numerically in such a way as to obtain simultaneously
the same values of the buckling load for i = I and i =2. One observation should be made:
As the minimum constraint 4>1 decreases (in the range ()l < 0.53) the buckling load
increases slightly and starting from a certain threshold value (in this case ()I =0.44 in Fig.
2) the minimum constraint becomes inactive. In fact the optimal solution in this case does
not depend on cf>1 (see also[7, 12-14}). Appropriate optimal mass distribution is shown in
Fig. 3, where optimal mass distribution of an elastic column, which has the same buckling
load, is added. The same behaviour is observed in Figs. 4 and 5 for t. = 87600 h.

6. CONCLUSIONS

Optimal shape of a clamped-damped column under creep conditions is similar to that
obtained in the elastic range, only the minimal cross-sections are subject to a more marked
increase.
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